Image of the glider from the Game of Life by John Conway
Skip to content

The NSA and Number Stations- An Historical Perspective

With all the latest news about PRISM and the United States government violating citizen's 4th amendment rights, I figured I would throw in a blog post about it. However, I'm not going to add anything really new about how to subvert the warantless government spying. Instead, I figured I would throw in an historical perspective on how some avoid being spied on.

The One-time Pad

In order to understand this post, we first need to understand the One-time Pad, or OTP for short. The OTP is a mathematically unbreakable encryption algorithm, which uses a unique and different random key for every message sent. The OTP must be the same length as the message being sent, or longer. The plaintext is then XOR'd with the OTP to create the ciphertext. The recipient on the other end has a copy of the OTP, which is used to XOR the ciphertext, and get back to the original plaintext. The system is extremely elegant, but it's not without its flaws.

First, the OTP must be communicated securely with the recipient. One argument against the OTP is if you can communicate your key securely, then why not just communicate the message in that manner? That's a fine question, except it misses one critical point: more than one OTP can be communicated at first meeting. The recipient might have 20 or 50 OTPs in their possession, knowing the order in which they are used.

Second, if the same OTP key is used for two or more messages, and those messages are intercepted, they can be used to derive the private key! It is exceptionally critical that every message be encrypted with its own unique and random OTP. This is not trivial.

One major advantage of the OTP is the lack of incriminating evidence. OTPs have been found on rice paper, bars of soap, microfilm, or hidden in plain sight, such as using words from a book or a crossword puzzle. One the key has been used, it can be destroyed with minimal effort. Compared to destroying data on a computer, which is much more difficult, than say, burning the rice paper, or shuffling a deck of cards.

Field Agents

Enter spies and field agents. Suppose a government wishes to communicate with a field agent in a remote country. The message they wish to send is "ATTACK AT DAWN". How do you get this message delivered to your agent securely and anonymously? More importantly, how can your field agent intercept the message without raising suspicion, or without any incriminating evidence against them?

This turns out to be a difficult problem to solve. If you meet at a specific location at a specific time, how do you communicate it without raising suspicion? Maybe you mail a package or envelope to your agent, but then how do you know it won't be intercepted and examined? Many totalitarian states, such as North Korea, examine all inbound and outbound mail.

Numbers Stations

Enter radio. First, in developed countries, just about everyone owns a radio. You can purchase them just about everywhere, and carrying one around, or having one in your room, is not incriminating enough to convict you as a spy. Second, your field agent already has a set of OTPs on hand. So, transmitting the encrypted message over the air isn't a problem for interception.

So, roughly around the time of World War 2, governments started communicating with field agents on the radio. Now, this can neither be confirmed, nor denied, but numbers stations have been on the air for decades. Numbers stations are illegal transmissions, usually on the edges of short wave bands. Typically, this is referred to as "pirate radio", and governments are very effective at finding them. Most of these numbers stations have very rigid schedules; so rigid, you could set your watch to them. If they are not transmitted by government agencies, they would be shut down fast. Given the length they've been on the air, the sheer number of them, and their rigid schedules, tells us that government agencies are the best bet for the source of the transmission.

So, what does a numbers station sound like? Typically, most of them have some sort of "header" transmission, before getting into the "body" of the encrypted text. This header could be a series of digits repeated over and over, a musical melody, a sequence of tones, or nothing. Then the body is delivered. Typically, it's given in sets of 5 numbers, which is common in cryptography circles. Something like "51237 65500 81734", etc. The transmissions are usually short, roughly 3-5 minutes in length. Some transmissions will end with a "footer", like "000 000" or "end transmission" for the agent to identify the transmission is over. There is never any sort of station identification. They are one-way anonymous transmissions. Almost always, the voice reading the numbers is computer generated. They can be transmitted in many different languages: Spanish, English, German, Chinese, etc. And if that's not enough, some are verbally spoken, some in Morse code, some digital.

Want to hear what one sounds like? Here is a transmission from the "Lincolnshire Poacher" (Wikipedia page, found in the article). Some numbers stations have been given names by their enthusiasts, who listen and record them frequently. In this case, named after an English folk-song, because it is played as the header to every transmission. However, the station didn't exist in England. Rather, it was stationed in Cyprus.

Don't think that sounds eerie enough? There is a German numbers station called the "Swedish Rhapsody", where it starts by ringing church bells for the header. Then, a female child voice reads the numbers. You swear this could be something out of a horror movie.

Not all stations stay on the air either. Many disappear over time, some quickly, some after many years. The Licolnshire Poacher numbers station was on the air for about 20 years, before it went silent. Numbers stations also don't always have rigid schedules. Some will just appear seemingly out of nowhere, and never come back online. And because these are on shortwave bands, they can travel hundreds and thousands of miles, so your field agent could literally be anywhere in the world. So long as he has his radio with him, a decent antenna, and a clear sky overhead, he'll pick it up.

The NSA

So, where does that bring us? Well, with the NSA spying us, numbers stations sound like an attractive alternative to phone and email conversations. Now, as already mentioned, numbers stations are illegal, especially in the United States. So, it doesn't seem like an attractive alternative, even if they are still on the air.

However, the OTP can be an effective and practical way to send messages securely. I mentioned almost a year ago, of a way to create a USB hard drive with a OTP on the drive. Both the sender and the recipient have an exact copy of the drive, along with a software utility necessary for encrypting and decrypting the data, as well as destroying the bits used for the OTP. Once the bits on the drives are all used up, the sender and the recipient meet to rebuild the OTP on the drive.

{ 3 } Comments

  1. whatever using Firefox 21.0 on Ubuntu 64 bits | June 20, 2013 at 4:21 am | Permalink

    A Historical Perspective

    http://grammar.quickanddirtytips.com/a-historic-versus-an-historic.aspx

    (discard this comment)

  2. Aaron Toponce using Google Chrome 29.0.1541.0 on Mac OS | June 20, 2013 at 7:55 am | Permalink

    It's not so cut-and-dry: http://grammartips.homestead.com/historical.html

  3. outa using Firefox 23.0 on Ubuntu 64 bits | August 9, 2013 at 8:34 am | Permalink

    Regarding the OTP hard drive: here is software implementation that uses a similar idea: http://imotp.sourceforge.net/
    The report on that site also mentions that in order to avoid delay attacks / accidentally using the same key twice, Bob and Alice should have separate sending and receiving pads.

Post a Comment

Your email is never published nor shared.

Switch to our mobile site