Image of the glider from the Game of Life by John Conway
Skip to content

Playing Card Ciphers

For the past couple of weeks, I've been focused heavily on hand ciphers for field agents. Although I'm certainly no expert on cryptography, aside from the One Time Pad (OTP), I've had a hard time finding any hand cipher that would be considered secure in the computer age. It's certainly no doubt that field agents are very likely using computing with SSL and GPG, among other crypto tools, to communicate with each other. The romantic days of "Spy versus Spy" encrypting and decrypting notes by hand, doing dead drops in a tree stump in a park, and speaking 15 foreign languages fluently, are probably over. Regardless, I could not bring myself to believe that there were absolutely no secure hand ciphers to study.

I had already been familiar with Bruce Schneier's "Solitaire" card cipher, and always considered that a fairly creative use for a hand cipher. Despite its bias, it's still very secure, although slow to execute by hand, and very error prone. But this got me thinking- has anyone else attempted to create hand ciphers with playing cards, and if so, how far have they taken it?

After searching the Internet, I found five additional playing card ciphers, and implemented one mechanical cipher into a playing card cipher, Each comes with their own varying levels of security. While I was at it, I created my own playing card cipher, and I'm still currently evaluating its security. That brings to total list to eight playing card ciphers:

As you can see, I've spent a great deal of time learning each of the algorithms, and have typed them up by hand on my own personal wiki. Quadibloc is the only card cipher, at the time of this writing, that I am still learning and working on. I'm hoping this can be a centralized repository for all things playing card ciphers. My goals for this personal project are:

  • Publish software implementations of each card cipher.
  • Publish online videos giving a tutorial of each card cipher
  • Learn the strengths and weaknesses of each card cipher.

The big advantage of using playing cards, in my opinion, is the ability for the deck to maintain state while working through the algorithm. A standard deck of cards can have a maximum key space of 52! which is about 238-bits of entropy. This is likely larger than many SSL keys on the Internet protecting your bank login. So, provided the algorithm is non-linear, mixes the deck thoroughly on each round, and is not biased, it is possible that the algorithm could resist attacks from even the most well funded adversaries.

There is still work to be done, and I doubt this will be of any value to the general cryptographic community. After all, the OTP can be mathematically proven to be unbreakable, and computer algorithms are fast and error-free. So, who in their right mind would want to learn hand ciphers with playing cards, when they won't have a mathematical proof of unbreakability, they're slow, and error-prone?


{ 2 } Comments

  1. Kanika Mathur | November 21, 2016 at 4:00 am | Permalink

    I think we got them as a present but if you put Invisible Playing Cards into Google they come up. Check out our website for latest design playing cards we have updated new cards in our website.

  2. Pierre | July 6, 2017 at 12:19 pm | Permalink


    on the The Card-Chameleon Cipher page, in the greyed box, some examples tell that 25/26 red cards are the expected ones and so, 1/26 is not.

    I may be dumb but how can only *one* card be wrong ?

Post a Comment

Your email is never published nor shared.